Increasing the replicability for linear models via adaptive significance levels

نویسندگان

چکیده

We put forward an adaptive \(\alpha \) (type I error) that decreases as the information grows for hypothesis tests comparing nested linear models. A less elaborate adaptation was presented in Pérez and Pericchi (Stat Probab Lett 85:20–24, 2014) general i.i.d. The calibration proposed this paper may be interpreted a Bayes–non-Bayes compromise, of simple translation Bayes factor on frequentist terms leads to statistical consistency, most importantly, it is step toward statistics promotes replicable scientific findings.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Evaluating the Replicability of Significance Tests for Comparing Learning Algorithms

Empirical research in learning algorithms for classification tasks generally requires the use of significance tests. The quality of a test is typically judged on Type I error (how often the test indicates a difference when it should not) and Type II error (how often it indicates no difference when it should). In this paper we argue that the replicability of a test is also of importance. We say ...

متن کامل

Adaptive linear models for regression

The general setting of regression analysis is to identify a relationship between a response variable Y and one or several explanatory variables X by using a learning sample. In a prediction framework, the main assumption for predicting Y on a new sample of X observations is that the regression model Y = f(X) + ǫ is still valid. Unfortunately, this assumption is not always true in practice and t...

متن کامل

The statistical significance filter leads to overconfident expectations of replicability

We show that publishing results using the statistical significance filter—publishing only when the p-value is less than 0.05—leads to a vicious cycle of overoptimistic expectation of the replicability of results. First, we show analytically that when true statistical power is relatively low, computing power based on statistically significant results will lead to overestimates of power. Then, we...

متن کامل

the application of multivariate probit models for conditional claim-types (the case study of iranian car insurance industry)

هدف اصلی نرخ گذاری بیمه ای تعیین نرخ عادلانه و منطقی از دیدگاه بیمه گر و بیمه گذار است. تعین نرخ یکی از مهم ترین مسایلی است که شرکتهای بیمه با آن روبرو هستند، زیرا تعیین نرخ اصلی ترین عامل در رقابت بین شرکتها است. برای تعیین حق بیمه ابتدا می باید مقدار مورد انتظار ادعای خسارت برای هر قرارداد بیمه را برآورد کرد. روش عمومی مدل سازی خسارتهای عملیاتی در نظر گرفتن تواتر و شدت خسارتها می باشد. اگر شر...

15 صفحه اول

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Test

سال: 2022

ISSN: ['0193-4120']

DOI: https://doi.org/10.1007/s11749-022-00803-4